## **PGSuper**

# **TOGA**Texas Optional Girder Analysis

Taya Retterer February 15, 2012







### Introduction

- What is TOGA?
  - Texas Optional Girder Analysis
  - For Tx Girders and I Beams

Straight to an Example!













(T) Groups

C

Plan\_Subm...

Bridge

Railing ...

Shortcut to

List of VAL...

Design

Resources

TRetter

Engdata -

Shortcut

7

(U) Tretter

0\_Projects -

Shortcut



































|                      |                   |               | DE             | SIGN                             | ED G         | IRDER      | is (D                  | EPRES    | SED S      | TRAN | DS)  |                                                  |                                                     |                                                                         | OPTION                                                                        | IAL DES                                                          | GN     |                        |
|----------------------|-------------------|---------------|----------------|----------------------------------|--------------|------------|------------------------|----------|------------|------|------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|--------|------------------------|
| STRUCTURE            | SPAN<br>NO.       | GIRDER<br>NO. | GIRDER<br>TYPE | NON-<br>STD<br>STRAND<br>PATTERN | TOTAL<br>NO. |            | STRGTH<br>fpu<br>(kal) | "e"<br>© | *e*<br>END | DEPI | TO   | CONCI<br>RELEASE<br>STROTH<br>1<br>f'oi<br>(ksi) | MINIMUM<br>28 DAY<br>COMP<br>STRGTH<br>f'c<br>(ksi) | DESIGN<br>LOAD<br>COMP<br>STRESS<br>(TOP ¢)<br>(SERVICE 1)<br>fot (ksi) | DESIGN<br>LOAD<br>TENSILE<br>STRESS<br>(BOTY C)<br>(SERVICE III)<br>FCD (KSI) | REQUIRED MINIMUM ULTIMATE MOMENT CAPACITY (STRENGTH I) (ff-kips) | DISTRI | LOAD<br>IBUTION<br>TOR |
|                      | 1                 | ALL           | T×46           | 4                                | 48           | 0.6        |                        | 13.35    | 5.85       | 12   | 42.5 | 5.600                                            | 7.400                                               | 4.549                                                                   | -4.394                                                                        | 6639                                                             | 0.528  | 0.634                  |
|                      | 2                 | ALL           | Tx46           | (5)                              | 44           | 0.6        | 270                    | 13.88    | 6.60       | 10   | 42.5 | 5.400                                            | 7.100                                               | 4.399                                                                   | -4.255                                                                        | 6443                                                             | 0.528  | 0.634                  |
| NORTHBOUND           | 3-6<br>&<br>16-20 | ALL           | Tx54           |                                  | 60           | 1/2        | 270                    | 17.61    | 10.94      | 10   | 50.5 | 5. 400                                           | 6.100                                               | 3.906                                                                   | -3.944                                                                        | 7752                                                             | 0. 591 | 0.767                  |
| DIRECT               | 7-8<br>&<br>12-13 | ALL           | Tx54           |                                  | 22           | <b>1/2</b> | 270                    | 20.28    | 19.19      | 4    | 10.5 | 4.000                                            | 5.000                                               | 1.829                                                                   | -1.948                                                                        | 4110                                                             | 0.656  | 0.767                  |
|                      | 14                | ALL           | Tx54           |                                  | 30           | 1/2        | 270                    | 19.81    | 17.41      | 6    | 18.5 | 4.000                                            | 5.000                                               | 2.345                                                                   | -2.479                                                                        | 5200                                                             | 0.688  | 0.767                  |
|                      | 15                | ALL           | Tx54           |                                  | 66           | 1/2        | 270                    | 17.07    | 10.52      | 12   | 48.5 | 5.800                                            | 6.400                                               | 4,008                                                                   | -4.128                                                                        | 8367                                                             | 0.688  | 0.767                  |
|                      | 21                | ALL           | Tx54           |                                  | 62           | <b>½</b>   | 270                    | 17.46    | 11.01      | 10   | 50.5 | 5.600                                            | 6.300                                               | 4.026                                                                   | -4.058                                                                        | 7954                                                             | 0.588  | 0.767                  |
|                      | 1                 | ALL           | Tx46           | 4                                | 48           | 0.6        | 270                    | 13.35    | 5.85       | 12   | 42.5 | 5.600                                            | 7.400                                               | 4.549                                                                   | -4.394                                                                        | 6639                                                             | 0. 528 | 0.634                  |
|                      | 2                 | ALL           | Tx46           | (5)                              | 44           | 0.6        | 270                    | 13.88    | 6.60       | 10   | 42.5 | 5.400                                            | 7.100                                               | 4.399                                                                   | -4.255                                                                        | 6443                                                             | 0.528  | 0.634                  |
| SOUTHBOUND<br>DIRECT | 3-8<br>&<br>16-18 | ALL           | Tx54           |                                  | 60           | 1/2        | 270                    | 17.61    | 10.94      | 10   | 50.5 | 5. 400                                           | 6.100                                               | 3.906                                                                   | -3.945                                                                        | 7754                                                             | 0.591  | 0.767                  |
| CONNECTOR            | 9&14              | ALL           | Tx54           |                                  | 30           | 1/2        | 270                    | 19.81    | 17.41      | 6    | 18.5 | 4.000                                            | 5.000                                               | 2.384                                                                   | -2.490                                                                        | 5122                                                             | 0.633  | 0.767                  |
|                      | 13                | ALL           | Tx54           |                                  | 34           | 1/2        | 270                    | 19.48    | 16.65      | 6    | 22.5 | 4.000                                            | 5,000                                               | 2.583                                                                   | -2.682                                                                        | 5474                                                             | 0.625  | 0.767                  |
|                      | 15                | ALL           | Tx54           |                                  | 68           | 1/2        | 270                    | 16.83    | 9.42       | 14   | 50.5 | 5.800                                            | 6.400                                               | 4.068                                                                   | -4.211                                                                        | 8594                                                             | 0.718  | 0.767                  |
|                      | 19                | ALL           | Tx54           |                                  | 62           | 1/2        | 270                    | 17.46    | 11.01      | 10   | 50.5 | 5.600                                            | 6,300                                               | 4.026                                                                   | -4.059                                                                        | 7956                                                             | 0.588  | 0.767                  |





TYPE Tx46 & Tx543

|     | N       | ON-STANDARD STRAND PATTERNS          |
|-----|---------|--------------------------------------|
|     | PATTERN | STRAND ARRANGEMENT<br>AT € OF GIRDER |
| -   | (4)     | A(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)    |
| -   |         | B(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)    |
| -   |         | C(2.5, 4.5, 6.5, 8.5, 10.5)          |
| -   |         | D(2.5, 4.5, 6.5, 8.5, 10.5)          |
| -   |         | E(2.5, 4.5)                          |
| -   |         |                                      |
| -   | (5)     | A(2.5, 4.5, 6.5, 8.5, 10.5)          |
| -   |         | B(2.5, 4.5, 6.5, 8.5, 10.5)          |
| -   |         | C(2.5, 4.5, 6.5, 8.5, 10.5)          |
| -   |         | D(2.5, 4.5, 6.5, 8.5, 10.5)          |
| - 1 |         | E(2.5, 4.5)                          |

### GENERAL NOTES:

Designed in accordance with AASHTO LRFD Specifications.
All concrete must be Class H. Provide Class HLRFC! If shown
When shown on this sheet, the Fobricator has the option
of furnishing either the designed depressed strand girder or
on approved optional design. All optional design submittels
must be signed, sealed and dated by a registered
Professional Engineer.

Optional designs for girders 120 feet or longer must have calculated residual comber equal to or greater than that if the designed girder.

of the designed girder.

Prestress losses for the designed girders have been colculated for a relative humidity of 60 percent. Optional designs must likewise conform.

designs must likewise contorms.

For depressed strond designeth 2 grid system unless a Non-Standard Strond Pattern is indicated. Fill row "2.5", then row "4.5", then row "6.5", etc., beginning each row in the "A" position and working outward until the required number of stronds is reached. All stronds in the "A" position and working outward until the required number of stronds is reached. All stronds in the "A" so that, of the girder ends, the upper two stronds are in the position shown in the toble.

position shown in the table.

Stronds for the designed girder must be low relaxation stronds pretensioned to 75 percent of fpu each.

Seat crocks in girder ends exceeding 0.005° in width as directed by the Engineer. The fabricator is permitted toleraces the spocing of Bars from the permitted toleraces the spocing of Bars from the permitted toleraces the spocing of Bars from the permitted toleraces and the permitted tolerace the spocing of Bars from the permitted tolerace the decreased spocing results in no less than 1° clear between bars. The fabricator must take an approved corrective action if cracks greater than 0.005° form on a repetitive basis.

1) Based on the following allowable stresses (ksi):

Compression = 0.65 f'ci Tension =  $0.24\sqrt{f'ci}$ 

Optional designs must likewise conform.

2 Portion of full HL93.

(3) Full-length debonded strands are only permitted in strand positions marked  $\Delta$ . Double wrap full-length debonded strands in outermost position of each row. Full-length debonding must comply with Item 426.4.F.4.



Texas Department of Transportation
Bridge Division

PRESTRESSED CONCRETE
I-GIRDER DESIGNS
(NON-STANDARD SPANS)

HL93 LOADING

I GND

Rer: SLA 03-23-11

TYPE Tx62 & Tx70<sup>3</sup>







| STI                      | RUCTURE |                   | ER GIRDER MON STITUTE STAN PATTE | TOTAL SIZE     | fpu<br>(ksl) (in                 | END h        | NO. TO     | CONCRETE  RELEASE MINI STROTH 28 ( CON F'ol f' Oks1) Oks  5.600 7.4 | DAY  P STRESS OTH  C (SERVICE I  fot (Ksi) | LOAD<br>TENSILE<br>STRESS<br>(BOTT C)<br>) (SERVICE 111)(S<br>FCD (Ks1) | (ft-kips) | LIVE LOAD DISTRIBUTION FACTOR 2  Moment She | 2 40 6         | 16. 5<br>14. 5<br>12. 5<br>10. 5 |                                                            | (Typ)                                                            | PATTERN (4)                                                          | B(2.5, 4.5<br>C(2.5, 4.5 | STRAND ARR<br>AT & OF<br>, 6.5, 8.5,<br>, 6.5, 8.5,<br>, 6.5, 8.5,<br>, 6.5, 8.5, | 0.5, 12.5)<br>0.5, 12.5)<br>0.5, 12.5)                                                                                            |
|--------------------------|---------|-------------------|----------------------------------|----------------|----------------------------------|--------------|------------|---------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|-----------|---------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                          |         | 2 AL              | Tx46 (5                          | DE             | ESIGN                            | ED G         | IRDEF      | RS (D                                                               | EPRES                                      | SED S                                                                   | (RAN      | DS)                                         | 34 - 1         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | OPTION                                                           | VAL DES                                                              |                          | , 6.5, 8.5,                                                                       | 0, 5)<br>, 5)<br>, 5)                                                                                                             |
| STRUCTU                  | URE     | SPAN<br>NO.       | GIRDER<br>NO.                    | GIRDER<br>TYPE | MON-<br>SID<br>STRAND<br>PATTERN | TOTAL<br>NO. |            | STRETH                                                              |                                            | STRANDS<br>*e*<br>END                                                   |           | TO                                          |                | METE<br>MINIMAN<br>28 DAY<br>COMP<br>STRGTH<br>E'c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESIGN<br>LOAD<br>COMP<br>STRESS<br>(TOP C)<br>(SERVICE 1) | DESIGN<br>LOAD<br>TENSILE<br>STRESS<br>(BOTT E)<br>(SERVICE 111) | REQUIRED<br>MINIMAN<br>ULTIMATE<br>MOMENT<br>CAPACITY<br>ISTRENGTH 1 | DESTR                    | LOAD<br>IBUTION<br>CTOR                                                           | Specifications,<br>ass HEMPC) if shown<br>ust be Grade 60,<br>has the option<br>d strand girder or<br>design submittals<br>stered |
| na inaseri na Pro        |         | <u> </u>          | ALL                              | Tx46           | (4)                              | 48           | 0.6        | 270                                                                 | (in)<br>13.35                              | 5.85                                                                    | 12        | (in)<br>42.5                                | (ks1)<br>5.600 | 7.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fot (ksi)<br>4. 549                                        | fcb(ksi)<br>-4,394                                               | (ft-kips)<br>6639                                                    | 0. 528                   | 5hear<br>0.634                                                                    | longer must have reater than that s have been ercent. Optional trands must be system unless a                                     |
| 90<br>00<br>04<br>4<br>4 |         | 2                 | ALL                              | Tx46           | (5)                              | 44           | 0.6        | 270                                                                 | 13.88                                      | 6.60                                                                    | 10        | 42.5                                        | 5.400          | 7.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4, 399                                                     | -4.255                                                           | 6443                                                                 | 0.528                    | 0.634                                                                             | Fill row "2.5",<br>nning each row<br>til the required<br>in the "A"<br>e 2" spacing so<br>rands are in the                        |
| NORTHBOU                 | ONI     | 3-6<br>&<br>16-20 | ALL                              | Tx54           |                                  | 60           | 1/2        | 270                                                                 | 17.61                                      | 10.94                                                                   | 10        | 50.5                                        | 5.400          | 6.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.906                                                      | -3.944                                                           | 7752                                                                 | 0.591                    | 0.767                                                                             | ecch. 03' in width as is permitted providing provided the 1" clear coproved .005" form                                            |
| CONNECTO                 | OR      | 7-8<br>&<br>2-13  | ALL                              | Tx54           |                                  | 22           | <b>1/2</b> | 270                                                                 | 20. 28                                     | 19. 19                                                                  | 4         | 10.5                                        | 4.000          | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.829                                                      | -1.948                                                           | 4110                                                                 | 0.656                    | 0.767                                                                             | ssės (ksi):                                                                                                                       |
| 644                      |         | 14                | ALL                              | Tx54           |                                  | 30           | 1/2        | 270                                                                 | 19.81                                      | 17.41                                                                   | 6         | 18.5                                        | 4.000          | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.345                                                      | -2.479                                                           | 5200                                                                 | 0.688                    | 0.767                                                                             | n.<br>permitted in strand<br>I-length debonded                                                                                    |
|                          |         | 15                | ALL                              | Tx54           | $  \setminus $                   | 66           | 1/2        |                                                                     |                                            | 10.52                                                                   |           | 48.5                                        | 5.800          | 6. 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.008                                                      | -4.128                                                           | 8367                                                                 | 0.688                    | 0.767                                                                             | row. Full-length                                                                                                                  |
| Ļ—                       | $\perp$ | 21                | ALL                              | Tx54           |                                  | 62           | 1/2        | 270                                                                 | 17.46                                      | 11.01                                                                   | 10        | 50.5                                        | 5.600          | 6.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.026                                                      | -4.058                                                           | 7954                                                                 | 0.588                    | 0.767                                                                             | )ING                                                                                                                              |
| 1                        |         |                   |                                  |                |                                  | \            |            |                                                                     |                                            |                                                                         |           |                                             | 2 1/2" 32      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CBAABCDEFG<br>Spo of 2"                                    | Nichols<br>3/24/                                                 | r                                                                    | PREST                    | RESSED IRDER                                                                      |                                                                                                                                   |

OPTIONAL DESIGN



DESIGNED GIRDERS (DEPRESSED STRANDS)





NON-STANDARD STRAND PATTERNS













| _ |                      |                   |               |                |                          |              |       |        |        |            |      |        |        |                          |                   |                                                |                                |        |       |
|---|----------------------|-------------------|---------------|----------------|--------------------------|--------------|-------|--------|--------|------------|------|--------|--------|--------------------------|-------------------|------------------------------------------------|--------------------------------|--------|-------|
|   |                      |                   |               | DE             | SIGN                     | ED G         | IRDER | RS (D  | EPRES  | SED ST     | RAN  | DS)    |        |                          |                   | OPTION                                         | IAL DES                        | GN     |       |
|   |                      |                   |               |                |                          |              | - 6   | PRESTR | ESSING | STRANDS    | 0500 | RESSED | CONC   | RETE                     | DESIGN<br>LOAD    | DESIGN<br>LOAD                                 | REQUIRED MINIMA                | LIVE   | LOAD  |
|   | STRUCTURE            | SPAN<br>NO.       | GIRDER<br>NO. | GIRDER<br>TYPE | STD<br>STRAND<br>PATTERN | TOTAL<br>NO. | SIZE  | STRGTH | .¢.    | "e"<br>END | NO.  | TO     | STRGTH | 28 DAY<br>COMP<br>STRETH | STRESS<br>(TOP C) | TENSILE<br>STRESS<br>(BOTT C)<br>(SERVICE 111) | ULTIMATE<br>MOMENT<br>CAPACITY | FAC    | TOR   |
|   |                      |                   |               |                |                          |              | (în)  | (kal)  | (in)   | (in)       |      | (in)   | (ksi)  | (ksi)                    | fot (ksi)         | fcb(ksi)                                       | (ff-kips)                      | Moment | Shear |
|   |                      | 1                 | ALL           | T×46           | 4                        | 48           | 0.6   | 270    | 13.35  | 5.85       | 12   | 42.5   | 5.600  | 7.400                    | 4.549             | -4.394                                         | 6639                           | 0.528  | 0.634 |
|   |                      | 2                 | ALL           | Tx46           | (5)                      | 44           | 0.6   | 270    | 13.88  | 6.60       | 10   | 42.5   | 5.400  | 7.100                    | 4.399             | -4.255                                         | 6443                           | 0.528  | 0.634 |
|   | NORTHBOUND<br>DIRECT | 3-6<br>&<br>16-20 | ALL           | Tx54           |                          | 60           | 1/2   | 270    | 17.61  | 10.94      | 10   | 50.5   | 5. 400 | 6.100                    | 3.906             | -3.944                                         | 7752                           | 0. 591 | 0.767 |
|   | CONNECTOR            | 7-8<br>&<br>12-13 | ALL           | Tx54           |                          | 22           | 1/2   | 270    | 20.28  | 19. 19     | 4    | 10.5   | 4.000  | 5.000                    | 1.829             | -1.948                                         | 4110                           | 0.656  | 0.767 |
|   |                      | 14                | ALL           | Tx54           |                          | 30           | 1/2   | 270    | 19.81  | 17.41      | 6    | 18.5   | 4.000  | 5.000                    | 2.345             | -2.479                                         | 5200                           | 0.688  | 0.767 |
|   |                      | 15                | ALL           | Tx54           |                          | 66           | 1/2   | 270    | 17.07  | 10,52      | 12   | 48.5   | 5.800  | 6. 400                   | 4.008             | -4.128                                         | 8367                           | 0.688  | 0.767 |
|   |                      | 21                | ALL           | Tx54           |                          | 62           | 1/2   | 270    | 17.46  | 11.01      | 10   | 50.5   | 5.600  | 6.300                    | 4.026             | -4.058                                         | 7954                           | 0.588  | 0.767 |
|   |                      | 1                 | ALL           | Tx46           | 4                        | 48           | 0.6   | 270    | 13.35  | 5.85       | 12   | 42.5   | 5.600  | 7. 400                   | 4.549             | -4.394                                         | 6639                           | 0. 528 | 0.634 |
|   |                      | 2                 | ALL           | Tx46           | (5)                      | 44           | 0.6   | 270    | 13.88  | 6.60       | 10   | 42.5   | 5.400  | 7.100                    | 4.399             | -4.255                                         | 6443                           | 0.528  | 0.634 |
|   | SOUTHBOUND<br>DIRECT | 3-8<br>&<br>16-18 | ALL           | Tx54           |                          | 60           | 1/2   | 270    | 17.61  | 10.94      | 10   | 50.5   | 5. 400 | 6.100                    | 3.906             | -3.945                                         | 7754                           | 0.591  | 0.767 |
|   | CONNECTOR            | 9&14              | ALL           | Tx54           |                          | 30           | 1/2   | 270    | 19.81  | 17.41      | 6    | 18.5   | 4.000  | 5.000                    | 2.384             | -2.490                                         | 5122                           | 0.633  | 0.767 |
|   |                      | 13                | ALL           | Tx54           |                          | 34           | 1/2   | 270    | 19.48  | 16.65      | 6    | 22.5   | 4.000  | 5.000                    | 2.583             | -2.682                                         | 5474                           | 0.625  | 0.767 |
|   |                      | 15                | ALL           | Tx54           |                          | 68           | 1/2   | 270    | 16.83  | 9.42       | 14   | 50.5   | 5.800  | 6. 400                   | 4.068             | -4.211                                         | 8594                           | 0.718  | 0.767 |
|   |                      | 19                | ALL           | Tx54           |                          | 62           | 1/2   | 270    | 17.46  | 11.01      | 10   | 50.5   | 5.600  | 6.300                    | 4.026             | -4.059                                         | 7956                           | 0.588  | 0.767 |





TYPE Tx46 & Tx54<sup>(3)</sup>

|         | ION-STANDARD STRAND PATTERNS         |
|---------|--------------------------------------|
| PATTERN | STRAND ARRANGEMENT<br>AT € OF GIRDER |
| (4)     | A(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)    |
|         | B(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)    |
|         | C(2.5, 4.5, 6.5, 8.5, 10.5)          |
|         | D(2.5, 4.5, 6.5, 8.5, 10.5)          |
|         | E(2.5, 4.5)                          |
| _       |                                      |
| (5)     | A(2.5, 4.5, 6.5, 8.5, 10.5)          |
|         | B(2.5, 4.5, 6.5, 8.5, 10.5)          |
|         | C(2.5, 4.5, 6.5, 8.5, 10.5)          |
|         | D(2.5, 4.5, 6.5, 8.5, 10.5)          |
|         | F(2, 5, 4, 5)                        |

### GENERAL NOTES:

Designed in occordance with AASHTO LRFD Specifications.
All concrete must be Class H. Provide Class HIMPCI if shown
When shown on this sheet, the Fabricator has the option
of furnishing either the designed depressed strond girder or
on approved optional design. All optional design submittels
must be signed, secied and doted by a registered
Professional Engineer.

Optional designs for girders 120 feet or longer must have calculated residual comber equal to or greater than that

of the designed girder.

Prestress losses for the designed girders have been colculated for a relative humidity of 60 percent. Optional designs must likewise conform.

ossigns must likewise contorms.
For depressed strand designen girders, strands must be For depressed strand designen girders, strands must be Non-Standard Strand Pottern is indicated. Fill row "2.5" then row "4.5", then row "6.5", etc., beginning each row in the "A" position and working outward until the required number of strands in the "A". position must be depressed, maintaining the 2" spacing so that, at the girder ends, the upper two strands are in the position shown in the table.

position shown in the table.

Stronds for the designed girder must be low relaxation stronds pretensioned to 75 percent of fpu each.

Seat croaks in girder ends exceeding 0.005° in width as directed by the Engineer. The fabricator is permitted to decrease the spacing of Bars R and 5 by providing additional bars to help I list croak width provided the between bars. The fabricator must take an openaved corrective action if croaks greater than 0.005° form on a repetitive basis.

1) Based on the following allowable stresses (ksi):

Compression = 0.65 f'ci Tension = 0.24 \( f'cl \)

Optional designs must likewise conform.

2 Portion of full HL93.

 $\star$ 

NICHOLAS NEMEC 102288

(3) Full-length debonded strands are only permitted in strand positions marked  $\Delta$ . Double wrap full-length debonded strands in outermost position of each row. Full-length debonding must comply with Item 426.4.F.4.



TYPE Tx62 & Tx70<sup>(3)</sup>

HL93 LOADING

₹ Texas Department of Transportation

PRESTRESSED CONCRETE I-GIRDER DESIGNS (NON-STANDARD SPANS)

ICND

|                                                |          |           | 3140      | ,    |     |         |
|------------------------------------------------|----------|-----------|-----------|------|-----|---------|
| FILE: igndstel.dgn                             | DN: JMH  | CR: TxDOT | two J     | TR   | CKI | Tx00T   |
| © Tx007 June 2007                              | DISTRICT | FESCRA    | L AID PRO | JECT |     | SHEET   |
| REVESTORS                                      | ELP      |           |           |      |     | 446     |
| 02/09: Conerol Notes,<br>10/09: Generol Notes, | 60       | NALL      | CONTROL   | SECT | J06 | HIGHNAT |
| 12/10: Rel Stroth & LLDF.                      | EL       | PASO .    | 2552      | 03   | 034 | LP 375  |

Rer: SLA 03-23-11



















|                      |                   |     | DE             | SIGN                     | ED G         | IRDER                 | RS (D         | EPRES  | SED S   | RAN  | DS)   |             |                                 |                                  | OPTION                                         | AL DES                                        | [GN    |          |
|----------------------|-------------------|-----|----------------|--------------------------|--------------|-----------------------|---------------|--------|---------|------|-------|-------------|---------------------------------|----------------------------------|------------------------------------------------|-----------------------------------------------|--------|----------|
|                      |                   |     |                |                          |              | -                     | PRESTR        | ESSING | STRANDS | 0500 | ESSED | CONC        | RETE                            | DESTON<br>LOAD                   | DESIGN<br>LOAD                                 | REQUIRED<br>WINIMA                            | LIVE   | LOAD     |
| STRUCTURE            | SPAN<br>NO.       | NO. | GIRDER<br>TYPE | STD<br>STRAND<br>PATTERN | TOTAL<br>NO. |                       | STRGTH<br>fpu |        | END     | NO.  | то    | STRGTH<br>1 | 28 DAY<br>COMP<br>STRCTH<br>F'c | STRESS<br>(TOP ¢)<br>(SERVICE I) | TENSILE<br>STRESS<br>(BOTT C)<br>(SERVICE III) | ULTIMATE<br>MOMENT<br>CAPACITY<br>ISTRENGTH I | FAC    | TOR<br>2 |
| <b></b>              |                   |     | -              |                          |              | (în)                  | (ks1)         | (in)   | (in)    | _    | (in)  | (ksi)       | (ksi)                           | fot (ksi)                        | fcb(ksi)                                       | (ft-kips)                                     | Moment | Shear    |
|                      | 1                 | ALL | Tx46           | 4                        | 48           | 0.6                   | 270           | 13.35  | 5.85    | 12   | 42.5  | 5.600       | 7.400                           | 4.549                            | -4.394                                         | 6639                                          | 0.528  | 0.634    |
|                      | 2                 | ALL | Tx46           | (5)                      | 44           | 0.6                   | 270           | 13.88  | 6.60    | 10   | 42.5  | 5.400       | 7.100                           | 4.399                            | -4.255                                         | 6443                                          | 0.528  | 0.634    |
| NORTHBOUND           | 3-6<br>&<br>16-20 | ALL | Tx54           |                          | 60           | 1/2                   | 270           | 17.61  | 10.94   | 10   | 50.5  | 5. 400      | 6.100                           | 3.906                            | -3.944                                         | 7752                                          | 0.591  | 0.767    |
| DIRECT               | 7-8<br>&<br>12-13 | ALL | Tx54           |                          | 22           | <i>y</i> <sub>2</sub> | 270           | 20.28  | 19.19   | 4    | 10.5  | 4.000       | 5.000                           | 1.829                            | -1.948                                         | 4110                                          | 0.656  | 0.767    |
|                      | 14                | ALL | Tx54           |                          | 30           | 1/2                   | 270           | 19.81  | 17.41   | 6    | 18.5  | 4.000       | 5.000                           | 2.345                            | -2.479                                         | 5200                                          | 0.688  | 0.767    |
|                      | 15                | ALL | Tx54           |                          | 66           | 1/2                   | 270           | 17.07  | 10,52   | 12   | 48.5  | 5,800       | 6. 400                          | 4,008                            | -4.128                                         | 8367                                          | 0.688  | 0.767    |
|                      | 21                | ALL | Tx54           |                          | 62           | 1/2                   | 270           | 17.46  | 11.01   | 10   | 50.5  | 5.600       | 6.300                           | 4.026                            | -4.058                                         | 7954                                          | 0.588  | 0.767    |
|                      | 1                 | ALL | Tx46           | 4                        | 48           | 0.6                   | 270           | 13.35  | 5.85    | 12   | 42.5  | 5.600       | 7.400                           | 4.549                            | -4.394                                         | 6639                                          | 0. 528 | 0.634    |
|                      | 2                 | ALL | Tx46           | (5)                      | 44           | 0.6                   | 270           | 13.88  | 6.60    | 10   | 42.5  | 5.400       | 7.100                           | 4.399                            | -4.255                                         | 6443                                          | 0.528  | 0.634    |
| SOUTHBOUND<br>DIRECT | 3-8<br>8<br>16-18 | ALL | Tx54           |                          | 60           | Y2                    | 270           | 17.61  | 10.94   | 10   | 50.5  | 5. 400      | 6.100                           | 3.906                            | -3.945                                         | 7754                                          | 0.591  | 0.767    |
| CONNECTOR            | 9&14              | ALL | Tx54           |                          | 30           | 1/2                   | 270           | 19.81  | 17.41   | 6    | 18.5  | 4.000       | 5.000                           | 2.384                            | -2.490                                         | 5122                                          | 0.633  | 0.767    |
|                      | 13                | ALL | Tx54           |                          | 34           | 1/2                   | 270           | 19.48  | 16.65   | 6    | 22.5  | 4.000       | 5,000                           | 2.583                            | -2.682                                         | 5474                                          | 0.625  | 0.767    |
|                      | 15                | ALL | Tx54           |                          | 68           | 1/2                   | 270           | 16.83  | 9.42    | 14   | 50.5  | 5.800       | 6. 400                          | 4.068                            | -4.211                                         | 8594                                          | 0.718  | 0.767    |
|                      | 19                | ALL | T×54           |                          | 62           | 1/2                   | 270           | 17.46  | 11.01   | 10   | 50.5  | 5.600       | 6.300                           | 4.026                            | -4.059                                         | 7956                                          | 0.588  | 0.767    |





### TYPE Tx46 & Tx54 3

| 1   | N       | ON-STANDARD STRAND PATTERNS          |
|-----|---------|--------------------------------------|
|     | PATTERN | STRAND ARRANGEMENT<br>AT € OF GIRDER |
| l   | (4)     | A(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)    |
| [   |         | B(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)    |
| ı   |         | C(2.5, 4.5, 6.5, 8.5, 10.5)          |
| ı   |         | D(2.5, 4.5, 6.5, 8.5, 10.5)          |
| ı   |         | E(2.5, 4.5)                          |
| -   |         |                                      |
| ١   | (5)     | A(2.5, 4.5, 6.5, 8.5, 10.5)          |
| ı   |         | 8(2.5, 4.5, 6.5, 8.5, 10.5)          |
| - 1 |         | C(2.5, 4.5, 6.5, 8.5, 10.5)          |
| ı   |         | D(2.5, 4.5, 6.5, 8.5, 10.5)          |
| ı   |         | E(2.5, 4.5)                          |

### GENERAL NOTES:

Designed in occordance with AASHTO LRFD Specifications.
All concrete must be Class H. Provide Class HIMPCI if shown
When shown on this sheet, the Fabricator has the option
of furnishing either the designed depressed strond girder or
on approved optional design. All optional design submittels
must be signed, secied and doted by a registered
Professional Engineer.

Optional designs for girders 120 feet or longer must have a calculated residual comber equal to or greater than that of the designed girder.

of the designed girder.

Prestress losses for the designed girders have been calculated for a relative humidity of 60 percent. Optional designs must likewise conform.

For depressed strond designed girders, stronds must be located as low as possible on the 2° grid system unless a Non-Standard Strond Pattern is indicated. Fill row "2.5", then row "4.5", then row "6.5", etc., beginning each row in the "A" position and working outward until the required position must be depressed, maintaining the 2° spacing so that, at the girder ends, the upper two strands are in the position shown in the toble.

position shown in the table.

Stronds for the designed girder must be low relaxation stronds pretensioned to 75 percent of fpu each.

Seat croaks in girder ends exceeding 0.005° in width as directed by the Engineer. The fabricator is permitted to decrease the spacing of Bars R and 5 by providing additional bars to help I list croak width provided the between bars. The fabricator must take an openaved corrective action if croaks greater than 0.005° form on a repetitive basis.

(1) Based on the following allowable stresses (ksi):

Compression = 0.65 f'ci Tension = 0.24 $\sqrt{f'ci}$ 

Optional designs must likewise conform.

2 Portion of full HL93.

 $\star$ 

NICHOLAS NEMEC

(3) Full-length debonded strands are only permitted in strand positions marked  $\Delta$ . Double wrap full-length debonded strands in outermost position of each row. Full-length debonding must comply with Item 426.4.F.4.



TYPE Tx62 & Tx703

HL93 LOADING

Texas Department of Transportation

Bridge Division

PRESTRESSED CONCRETE I-GIRDER DESIGNS (NON-STANDARD SPANS)

I GND

Rer: SLA 03-23-11



















| STRUCTURE  | SPAN GIRD<br>NO.  | PATTE         | TOTAL SIZE     | STRCTH "e" E fpu (Nai) (in 270 13.3 | END h        | io. To     | CONCRETE ELEASE MINIT STROTH 28 D 28 D COW (1 ) STRO (1 ) CW (1 ) CW (1 ) CW (2 ) CW (3 ) CW (4 ) CW (5 ) CW (7 ) CW ( | AT COMP<br>STRESS<br>ITH (TOP C)<br>(SERVICE I<br>1) for (KsI) | LOAD<br>TENSILE L<br>STRESS<br>(BOTT C) (<br>CSERVICE 11136S<br>FCD-0xs1) ( | (ff-kips) | LIVE LOAD DISTRIBUTION FACTOR (2)  Moment   She  0.528   0.6 | 20 00 20 20 20 20 20 20 20 20 20 20 20 2 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5      |                                                            | 3 ½" All Girdere (Typ) | (4)<br>(5)        | B(2.5, 4.5,<br>C(2.5, 4.5,<br>D(2.5, 4.5,<br>E(2.5, 4.5) | STRAND ARRA<br>AT © OF (<br>6.5, 8.5, 1<br>6.5, 8.5, 1<br>6.5, 8.5, 1 | 1RDER<br>0.5, 12.5)<br>0.5, 12.5)<br>0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|-------------------|---------------|----------------|-------------------------------------|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|--------------------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------------------|------------------------|-------------------|----------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                   |               | DE             | ESIGN                               | ED G         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | SED ST                                                                      | TRAN      | DS)                                                          |                                          |                                            |                                                            | OPTION                 | AL DES            | IGN                                                      |                                                                       | . 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| STRUCTURE  | SPAN<br>NO.       | GIRDER<br>NO. | GIRDER<br>TYPE | MON-<br>SID<br>STRAND<br>PATTERN    | TOTAL<br>NO. | SIZE       | STRETH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .ę.                                                            | *e*<br>END                                                                  | DEPF      | TO                                                           | RELEASE<br>STROTH                        | MINIMA<br>28 DAY<br>COMP<br>STRGTH<br>F' C | DESTON<br>LOAD<br>COMP<br>STRESS<br>(TOP C)<br>(SERVICE 1) |                        |                   | D(STR)                                                   | LOAD<br>IBUTION<br>TOR                                                | Specifications,<br>ass H(HPC) if show<br>ust be Grade 60,<br>has the option<br>d strand girder or<br>design submittals<br>stered<br>longer must have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Ι,                | ALL           | T×46           | (4)                                 | 48           | 0.6        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.35                                                          | 5.85                                                                        | 12        | (in)                                                         | (ksi)<br>5,600                           | 7.400                                      | 4.549                                                      | -4.394                 | (ft-kips)<br>6639 | 0.528                                                    | 0.634                                                                 | s have been<br>ercent. Optional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 2                 | ALL           | Tx46           | (3)                                 | 44           | 0.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.88                                                          | 6.60                                                                        |           | 42.5                                                         | 5. 400                                   | 7.100                                      | 4, 399                                                     | -4.255                 | 6443              | 0.528                                                    | 0.634                                                                 | system unless a Fill row "2.5", nning each row till the required in the "A" e 2" spacing so rands are in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NORTHBOUND | 3-6<br>&<br>16-20 | ALL           | Tx54           |                                     | 60           | 1/2        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.61                                                          | 10.94                                                                       | 10        | 50.5                                                         | 5.400                                    | 6.100                                      | 3. 906                                                     | -3.944                 | 7752              | 0.591                                                    | 0.767                                                                 | low relaxation<br>each.<br>05" in width as<br>is permitted<br>providing<br>provided the<br>1 "clear<br>capproved<br>.005" form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DIRECT     | 7-8<br>&<br>12-13 | ALL           | Tx54           |                                     | 22           | <b>1/2</b> | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.28                                                          | 19. 19                                                                      | 4         | 10.5                                                         | 4.000                                    | 5.000                                      | 1.829                                                      | -1.948                 | 4110              | 0.656                                                    | 0.767                                                                 | sses (ksi):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 14                | ALL           | Tx54           |                                     | 30           | 1/2        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.81                                                          | 17.41                                                                       | 6         | 18.5                                                         | 4.000                                    | 5.000                                      | 2, 345                                                     | -2.479                 | 5200              | 0.688                                                    | 0.767                                                                 | n.<br>permitted in st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 15                | ALL           | Tx54           |                                     | 66           | 1/2        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.07                                                          | 10.52                                                                       | 12        | 48.5                                                         | 5.800                                    | 6. 400                                     | 4,008                                                      | -4.128                 | 8367              | 0.688                                                    | 0.767                                                                 | -length debonder<br>row. Full-lengt<br>.F.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 21                | ALL           | Tx54           |                                     | 62           | 1/2        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.46                                                          | 11.01                                                                       | 10        | 50.5                                                         | 5.600                                    | 6.300                                      | 4.026                                                      | -4.058                 | 7954              | 0.588                                                    | 0.767                                                                 | ING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                   |               |                |                                     |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                             |           |                                                              | 32 SS                                    | 13                                         | CBAABCOEFG<br>Spo of 2" X62 & Tx7                          | Nichola<br>3/24/       | ,                 | PREST                                                    | RESSED<br>IRDER<br>-STANDA                                            | TONCRETE DESIGNS RD SPANS)  IGND 1 GOD 1 GOD   Dec 1 G |

OPTIONAL DESIGN



DESIGNED GIRDERS (DEPRESSED STRANDS)





NON-STANDARD STRAND PATTERNS













































SPAN 7 (TX54 GIRDERS) SPAN 8 (TX54 GIRDERS)

### BENT REPORT

| SPAN        | 7  | G                                                     | ( LINE AND GI<br>IRDER SPAC.<br>C.L. BENT)<br>0.000<br>7.333 | RDER 1 6,00<br>GIRDER ANGL<br>D M S<br>88 41 2<br>88 41 0 |  |
|-------------|----|-------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|--|
|             |    | GIRDER 3<br>GIRDER 4<br>TOTAL                         | 7.333<br>7.333<br>22.000                                     | 88 40 59<br>88 40 57                                      |  |
| DISTANCE BE | TW | EEN STATIO                                            | 8 (N 45 4<br>LINE AND GI<br>IRDER SPAC.<br>C.L. BENT)        |                                                           |  |
| SPAN        | 7  | GIRDER 1<br>GIRDER 2<br>GIRDER 3<br>GIRDER 4<br>TOTAL | 0.000<br>7.333<br>7.333<br>7.333<br>22.000                   | 88 29 33<br>88 29 35<br>88 29 36<br>88 29 38              |  |
| SPAN        | 8  | GIRDER 1<br>GIRDER 2<br>GIRDER 3<br>GIRDER 4<br>TOTAL | 0.000<br>7.333<br>7.333<br>7.333<br>22.000                   | 88 29 10<br>88 29 10<br>88 29 10<br>88 29 10              |  |
| DISTANCE BE | TW | EEN STATIO                                            | . 9 (N 48 4<br>N LINE AND GI<br>IRDER SPAC.<br>C.L. BENT)    | 14 48.36 W)<br>RDER 1 6.00<br>GIRDER ANGL<br>D M S        |  |
| SPAN        | 8  |                                                       | 0.000<br>7.333<br>7.333<br>7.333<br>22.000                   | 88 29 10<br>88 29 10<br>88 29 10<br>88 29 10              |  |

|                                      |         | GIRDER REP                                                         | DRT. SPAN                                                    | 7 | 92           |                                                            |                                                             |
|--------------------------------------|---------|--------------------------------------------------------------------|--------------------------------------------------------------|---|--------------|------------------------------------------------------------|-------------------------------------------------------------|
| GIRDER<br>GIRDER<br>GIRDER<br>GIRDER | 1 2 3 4 | HORIZONTAL<br>C-C BENT<br>79, 695<br>80, 057<br>80, 418<br>80, 779 | DISTANCE<br>C-C BRG.<br>73.693<br>74.055<br>74.416<br>74.777 |   | TRUE<br>BOT. | DISTANCE<br>GR. FLG. ②<br>75.19<br>75.56<br>75.92<br>76.28 | GIRDER<br>SLOPE<br>-0.0050<br>-0.0050<br>-0.0050<br>-0.0050 |
| GIRDER<br>GIRDER<br>GIRDER<br>GIRDER |         | HORIZONTAL<br>C-C BENT<br>T9.674<br>80.061<br>80.449<br>80.836     | DISTANCE<br>C-C BRG.<br>75.673<br>76.060<br>76.448<br>76.835 |   | TRUE<br>BOT. | DISTANCE<br>GR. FLG. ②<br>77.17<br>77.56<br>77.95<br>78.34 | GIRDER<br>SLOPE<br>-0.0050<br>-0.0050<br>-0.0049<br>-0.0049 |

① SEE IGEB STANDARD FOR ORIENTATION OF DIMENSION.

② GIRDER LENGTHS SHOWN ARE BOTTOM GIRDER FLANGE LENGTHS WITH ADJUSTMENTS MADE FOR GIRDER SLOPE.



Texas Department of Transportation
Bridge Division

GIRDER LAYOUT

(SPANS 7 - 8)

NB DIRECT CONNECTOR

| *1LE: 7347b101.dgn | DNI: SEN | 081  | av. T          | EN.  | Ot: | NRV     |
|--------------------|----------|------|----------------|------|-----|---------|
| Onest FEB 2011     | OBSTRICT | FR   | 068M, 418: PRO | MECT |     | SHEET   |
| MEVISIONS .        | ELP      |      |                |      |     | 366     |
|                    |          | TIME | CONTROL        | 5601 | J09 | PEGPMAN |
|                    |          |      |                |      |     |         |





















SPAN 7 (TX54 GIRDERS) SPAN 8 (TX54 GIRDERS)

### BENT REPORT



### GIRDER REPORT

| GIRDER<br>GIRDER<br>GIRDER<br>GIRDER | 3       | HORIZONTAL<br>C-C BENT<br>79.695<br>80.057<br>80.418<br>80.779               |   | TRUE<br>BOT. |                                                            | GIRDER<br>SLOPE<br>-0.0050<br>-0.0050<br>-0.0050<br>-0.0050 |  |
|--------------------------------------|---------|------------------------------------------------------------------------------|---|--------------|------------------------------------------------------------|-------------------------------------------------------------|--|
| GIRDER<br>GIRDER<br>GIRDER<br>GIRDER | 1 2 3 4 | GIRDER REP<br>HORIZONTAL<br>C-C BENT<br>79.674<br>80.061<br>80.449<br>80.836 | 8 | TRUE<br>BOT. | DISTANCE<br>GR. FLG. @<br>77,17<br>77,56<br>77,95<br>78,34 | GIRDER<br>SLOPE<br>-0.0050<br>-0.0050<br>-0.0049<br>-0.0049 |  |

MIDDLE MARE 102286 9 Pechalos Marie 3/4/4011 ① SEE IGEB STANDARD FOR ORIENTATION OF DIMENSION.

② GIRDER LENGTHS SHOWN ARE BOTTOM GIRDER FLANGE LENGTHS WITH ADJUSTMENTS MADE FOR GIRDER SLOPE.

Texas Department of Transportation
Bridge Division

GIRDER LAYOUT

(SPANS 7 - 8)

NB DIRECT CONNECTOR

| FILE: 7347b101.dgn | DNI SEN  | 081  | av. T   | EN . | (X: | MRV     |
|--------------------|----------|------|---------|------|-----|---------|
| Ones FEB 2011      | OESTRICE | FEO  | SHEET   |      |     |         |
| PEYTS DONG         | ELP      | -    | 366     |      |     |         |
|                    | - 00     | CALL | CONTROL | 5601 | J08 | PEOPMAY |
|                    | £1.      | PMS0 | 2552    | 03   | 034 | LP375   |

































| T          |                   |               | DE             | SIGN                             | FD G         | IBDEB                 | s (n   | FPRES    | SED S      | FAN   | DS1  |                   |                                             | T                                | OPTION                                                 | IAL DESI                                                  | CN     |        |
|------------|-------------------|---------------|----------------|----------------------------------|--------------|-----------------------|--------|----------|------------|-------|------|-------------------|---------------------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------|--------|
|            |                   |               |                | 3101                             |              |                       |        | ESSING : |            | - Air | 037  | CONC              | RETE                                        | DESIGN DESIGN REQUIRED LIVE LOAD |                                                        |                                                           |        | 1040   |
| STRUCTURE  | SPAN<br>NO.       | GIRDER<br>NO. | GIRDER<br>TYPE | NON-<br>STD<br>STRAND<br>PATTERN | TOTAL<br>NO. | SIZE                  | STRGTH |          | "e"<br>END | NO.   | TO   | RELEASE<br>STROTH | MINIMAM<br>28 DAY<br>COMP<br>STRGTH<br>F' C | COMP<br>STRESS<br>(TOP C)        | LOAD<br>TENSILE<br>STRESS<br>(BOTT C)<br>(SERVICE III) | MINIMAM<br>ULTIMATE<br>MOMENT<br>CAPACITY<br>ISTRENGTH II | DESTRI | BUTTON |
|            | _                 |               |                | _                                | _            | (în)                  | (ks1)  | (in)     | (in)       | _     | (in) | (ksi)             | (ksi)                                       | fot (ksi)                        | fcb(ksi)                                               | (ft-kips)                                                 | Moment | Shear  |
|            | 1                 | ALL           | Tx46           | 4                                | 48           | 0.6                   | 270    | 13.35    | 5.85       | 12    | 42.5 | 5.600             | 7.400                                       | 4,549                            | -4.394                                                 | 6639                                                      | 0.528  | 0.634  |
|            | 2                 | ALL           | Tx46           | (5)                              | 44           | 0.6                   | 270    | 13.88    | 6.60       | 10    | 42.5 | 5.400             | 7.100                                       | 4.399                            | -4.255                                                 | 6443                                                      | 0.528  | 0.634  |
| NORTHBOUND | 3-6<br>&<br>16-20 | ALL           | Tx54           |                                  | 60           | 1/2                   | 270    | 17.61    | 10.94      | 10    | 50.5 | 5. 400            | 6.100                                       | 3.906                            | -3.944                                                 | 7752                                                      | 0. 591 | 0.767  |
| DIRECT     | 7-8<br>&<br>12-13 | ALL           | Tx54           |                                  | 22           | <i>y</i> <sub>2</sub> | 270    | 20.28    | 19.19      | 4     | 10.5 | 4.000             | 5.000                                       | 1.829                            | -1.948                                                 | 4110                                                      | 0.656  | 0.767  |
|            | 14                | ALL           | Tx54           |                                  | 30           | 1/2                   | 270    | 19.81    | 17.41      | 6     | 18.5 | 4.000             | 5.000                                       | 2.345                            | -2.479                                                 | 5200                                                      | 0.688  | 0.767  |
|            | 15                | ALL           | Tx54           |                                  | 66           | 1/2                   | 270    | 17.07    | 10,52      | 12    | 48.5 | 5.800             | 6. 400                                      | 4,008                            | -4.128                                                 | 8367                                                      | 0.688  | 0.767  |
|            | 21                | ALL           | Tx54           |                                  | 62           | 1/2                   | 270    | 17.46    | 11.01      | 10    | 50.5 | 5.600             | 6.300                                       | 4.026                            | -4.058                                                 | 7954                                                      | 0.588  | 0.767  |
|            | 1                 | ALL           | Tx46           | 4                                | 48           | 0.6                   | 270    | 13.35    | 5.85       | 12    | 42.5 | 5.600             | 7.400                                       | 4.549                            | -4.394                                                 | 6639                                                      | 0. 528 | 0.634  |
|            | 2                 | ALL           | Tx46           | (5)                              | 44           | 0.6                   | 270    | 13.88    | 6.60       | 10    | 42.5 | 5.400             | 7.100                                       | 4.399                            | -4.255                                                 | 6443                                                      | 0.528  | 0.634  |
| SOUTHBOUND | 3-8<br>8<br>16-18 | ALL           | Tx54           |                                  | 60           | Y <sub>2</sub>        | 270    | 17.61    | 10.94      | 10    | 50.5 | 5. 400            | 6.100                                       | 3.906                            | -3.945                                                 | 7754                                                      | 0.591  | 0.767  |
| CONNECTOR  | 9&14              | ALL           | Tx54           |                                  | 30           | 1/2                   | 270    | 19.81    | 17.41      | 6     | 18.5 | 4.000             | 5.000                                       | 2.384                            | -2.490                                                 | 5122                                                      | 0.633  | 0.767  |
|            | 13                | ALL           | Tx54           |                                  | 34           | 1/2                   | 270    | 19.48    | 16.65      | 6     | 22.5 | 4.000             | 5.000                                       | 2.583                            | -2.682                                                 | 5474                                                      | 0.625  | 0.767  |
|            | 15                | ALL           | Tx54           |                                  | 68           | 1/2                   | 270    | 16.83    | 9.42       | 14    | 50.5 | 5.800             | 6. 400                                      | 4.068                            | -4.211                                                 | 8594                                                      | 0.718  | 0.767  |
|            | 19                | ALL           | Tx54           |                                  | 62           | 1/2                   | 270    | 17.46    | 11.01      | 10    | 50.5 | 5.600             | 6.300                                       | 4.026                            | -4.059                                                 | 7956                                                      | 0.588  | 0.767  |





TYPE Tx46 & Tx543

|   | N       | ON-STANDARD STRAND PATTERNS                |  |  |  |  |  |  |  |
|---|---------|--------------------------------------------|--|--|--|--|--|--|--|
|   | PATTERN | TTERN STRAND ARRANGEMENT<br>AT € OF GIRDER |  |  |  |  |  |  |  |
|   | (4)     | A(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)          |  |  |  |  |  |  |  |
|   |         | B(2.5, 4.5, 6.5, 8.5, 10.5, 12.5)          |  |  |  |  |  |  |  |
|   |         | C(2.5, 4.5, 6.5, 8.5, 10.5)                |  |  |  |  |  |  |  |
| 1 |         | D(2.5, 4.5, 6.5, 8.5, 10.5)                |  |  |  |  |  |  |  |
| 1 |         | E(2.5, 4.5)                                |  |  |  |  |  |  |  |
| 1 |         |                                            |  |  |  |  |  |  |  |
|   | (5)     | A(2.5, 4.5, 6.5, 8.5, 10.5)                |  |  |  |  |  |  |  |
|   |         | 8(2.5, 4.5, 6.5, 8.5, 10.5)                |  |  |  |  |  |  |  |
| 1 |         | C(2.5, 4.5, 6.5, 8.5, 10.5)                |  |  |  |  |  |  |  |
|   |         | D(2.5, 4.5, 6.5, 8.5, 10.5)                |  |  |  |  |  |  |  |
|   |         | E(2.5, 4.5)                                |  |  |  |  |  |  |  |

### GENERAL NOTES:

GENERAL NOTES:

Designed in accordance with AASHTO LRFD Specifications.
All concrete must be Class H. Provide Class HIHPC! If shown elsewhere in plans. All reinforcing bars must be Grade 60.
When shown on this sheet, the Fabricator has the option of furnishing either the designed depressed strond girder or an approved optional design. All optional design submitted Professional Engineer.

Optional Engineer:

Optional design of the designed girder for the designed girder.

Prostress losses for the designed girders have been professional to the half of the professional form of the half of 50 percent. Optional designs must likewise conform.
For depressed strond designed girders, stronds must be professed strond designed girders, stronds must be

For depressed strand designed girders, strands must be obtained as low as possible on the 2" grid system unless on-State of Strand Pattern is indicated. Fill per 2.5" Non-Stand Strond Pattern is indicated. Fill 2.5°, then row "4.5" There is indicated. Fill 2.5°, then row "4.5" There is not not in the "A" position and working outward until the required number of strands is reached. All strands in the "A" position must be depressed, maintaining the 2" spacing so that, at the girder ends, the upper two strands are in the position shown in the table.

position shown in the table.

Stronds for the designed girder must be low relaxation stronds pretensioned to 75 percent of fou each. Seal crocks in girder ends exceeding 0.005" in width as directed by the Engineer. The fabricator is permitted to decrease the spacing of Bars R and 5 by providing additional bars to help limit crack width provided the decreased spacing results in no less than the providing additional bars to help it in the last than the providing additional bars to help it in the last than the providing additional bars to help it in the last than 1005 form on a repetitive basis.

1) Based on the following allowable stresses (ksi):

Compression = 0.65 f'ci Tension = 0.24 \f'cl

Optional designs must likewise conform.

2 Portion of full HL93.

 $\star$ 

NICHOLAS NEMEC 102288

(3) Full-length debonded strands are only permitted in strand positions marked  $\Delta$ . Double wrap full-length debonded strands in outermost position of each row. Full-length debonding must comply with Item 426.4.F.4.



TYPE Tx62 & Tx70<sup>(3)</sup>

HL93 LOADING

₹ Texas Department of Transportation

PRESTRESSED CONCRETE I-GIRDER DESIGNS (NON-STANDARD SPANS)

ICND

|                                                |          | IGNU      |           |       |     |        |  |  |  |  |
|------------------------------------------------|----------|-----------|-----------|-------|-----|--------|--|--|--|--|
| FILE igndstel.dgn                              | DN: JMH  | CR: TxDOT | two J     | TR    | CKI | Tx00T  |  |  |  |  |
| F3LD igndste1.dgn<br>©Tx007 June 2007          | DISTRICT | FEDERA    | L A10 PRO | SHEET |     |        |  |  |  |  |
| REVESTONS                                      | ELP      |           | 446       |       |     |        |  |  |  |  |
| 02/09: Ceneral Nates.<br>10/09: General Nates. | 60       | NALL      | CONTROL   | SECT  | J06 | HIGHNA |  |  |  |  |
| 12/10: Rel Stroth & LLDF.                      | EL       | PASO .    | 2552      | 03    | 034 | LP 375 |  |  |  |  |

Rer: SLA 03-23-11























|           |                   |               | DE             | SIGN                             | ED G         |            |                        |          | SED ST        | RAN  | DS)     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         | OPTION                                                                        | IAL DES                                   | IGN              |                         | . 5)                                                                                                                          |
|-----------|-------------------|---------------|----------------|----------------------------------|--------------|------------|------------------------|----------|---------------|------|---------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| STRUCTURE | SPAN<br>NO.       | GIRDER<br>NO. | GIRDER<br>TYPE | NON-<br>SID<br>STRAND<br>PATTERN | TOTAL<br>NO. |            | STRETH<br>fpu<br>(kai) | "e"<br>E | FRANDS<br>END | DEPR | TO (in) | RELEASE<br>STROTH<br>()<br>f'oi<br>(ksi) | MINIMAN<br>28 DAY<br>COMP<br>STRGTH<br>F'c<br>(ksi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DESIGN<br>LOAD<br>COMP<br>STRESS<br>(TOP ¢)<br>(SERVICE I)<br>fot (ksi) | DESIGN<br>LOAD<br>TENSILE<br>STRESS<br>(BOTT C)<br>(SERVICE 111)<br>FCD (Ks1) |                                           | DESTRI<br>FAC    | LOAD<br>IBUTION<br>CTOR | Specifications, ass H(HPC) if si ust be Grade 60. hos the option d strond girder sign submittal ster                          |
|           | ,                 | ALL           | Tx46           | 4                                | 48           | 0.6        |                        | 13.35    | 5.85          | 12   | 42.5    | 5.600                                    | 7. 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.549                                                                   | -4.394                                                                        | 6639                                      | Monent<br>0. 528 | 0.634                   | s have been<br>ercent. Options<br>tronds must be<br>system unless a<br>Fill row "2.5",                                        |
|           | 2                 | ALL           | Tx46           | (5)                              | 44           | 0.6        | 270                    | 13.88    | 6.60          | 10   | 42.5    | 5.400                                    | 7.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4, 399                                                                  | -4.255                                                                        | 6443                                      | 0.528            | 0.634                   | nning each row<br>til the require<br>in the "A"<br>e 2" spacing so<br>rands are in th                                         |
| ORTHBOUND | 3-6<br>&<br>16-20 | ALL           | Tx54           |                                  | 60           | 1/2        | 270                    | 17.61    | 10.94         | 10   | 50.5    | 5.400                                    | 6.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.906                                                                   | -3.944                                                                        | 7752                                      | 0.591            | 0.767                   | low relaxation<br>each.<br>05" in width at<br>is permitted<br>providing<br>provided the<br>1" clear<br>approved<br>.005" form |
| DIRECT    | 7-8<br>&<br>12-13 | ALL           | Tx54           |                                  | 22           | <b>1/2</b> | 270                    | 20.28    | 19. 19        | 4    | 10.5    | 4.000                                    | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.829                                                                   | -1.948                                                                        | 4110                                      | 0.656            | 0.767                   | sses (ksl):                                                                                                                   |
|           | 14                | ALL           | Tx54           |                                  | 30           | 1/2        | 270                    | 19.81    | 17.41         | 6    | 18.5    | 4.000                                    | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.345                                                                   | -2.479                                                                        | 5200                                      | 0.688            | 0.767                   | n.<br>permitted in s                                                                                                          |
|           | 15                | ALL           | Tx54           |                                  | 66           | 1/2        | 270                    | 17.07    | 10.52         | 12   | 48.5    | 5.800                                    | 6. 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,008                                                                   | -4.128                                                                        | 8367                                      | 0.688            | 0.767                   | I-length debond<br>row. Full-len<br>.F.4.                                                                                     |
|           | 21                | ALL           | Tx54           |                                  | 62           | 1/2        | 270                    | 17.46    | 11.01         | 10   | 50.5    | 5.600                                    | 6.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.026                                                                   | -4.058                                                                        | 7954                                      | 0.588            | 0.767                   | ING                                                                                                                           |
|           |                   |               |                |                                  |              |            |                        |          |               |      |         | 32 55                                    | 0.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8.6.5<br>8. | A A B C D E F G                                                         | NI CHOL                                                                       | 25 NOME<br>2288<br>7 <b>Tomes</b><br>2011 | PREST            | RESSED<br>IRDER         | CONCRET<br>DESIGNS<br>RD SPANS)                                                                                               |

OPTIONAL DESIGN



DESIGNED GIRDERS (DEPRESSED STRANDS)



Rer: SLA 03-23-11



NON-STANDARD STRAND PATTERNS





| STRUCTURE           | SPAN GIRDS NO.    | R GIRDER SER STO STO STATE STA | TOTAL SIZE NO. (in) 48 0.6 | (in 270 13.3)                     | END N        | O. TO (In) | 400 7.1 | COMP COMP P STRESS (TOP C) (SERVICE 1) (SE | LOAD<br>TERSILE<br>STRESS<br>(BOTT E)<br>(SERVICE 111)IS<br>FODOST)<br>-4, 394 | 6639 ( | LIVE LOAD DISTRIBUTION FACTOR (2)  Moment She  0.528 0.6 | 9 0 2 °                                           | 6. 5<br>5. 5<br>5. 5<br>5. 5<br>5. 5<br>5. 5<br>5. 5<br>5. 5 |                                                                         | 3 ½ * All Girdere (Typ)                         | PATTERN (4) (5)                                                 | 8(2.5, 4.5)<br>C(2.5, 4.5)<br>D(2.5, 4.5)<br>E(2.5, 4.5)<br>A(2.5, 4.5) | STRAND ARRY<br>AT © OF (<br>6.5, 8.5, 1<br>6.5, 8.5, 1<br>6.5, 8.5, 1 | IRDER<br>0.5, 12.5)<br>0.5, 12.5)<br>0.5)<br>0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|--------------|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|----------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRUCTURE           | SPAN<br>NO.       | GIRDER<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GIRDER<br>TYPE             |                                   | TOTAL<br>NO. | ,          |         | EPRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SED STRANDS                                                                    |        | TO (in)                                                  | CONC<br>RELEASE<br>STROTH<br>(1)<br>f'oi<br>(ksi) | RETE<br>MINIMAN<br>28 DAY<br>COMP<br>STRGTH<br>f'c<br>(ksi)  | DESIGN<br>LOID<br>COMP<br>STRESS<br>(TOP C)<br>(SERVICE I)<br>fot (ksi) | DESIGN<br>LOAD<br>TENSILE<br>STRESS<br>(BOTT E) | REQUIRED MINIMAM ULTIMATE MOMENT CAPACITY (STRENGTH 1 CFT-Kips) | LIVE<br>DESTRI<br>FAC                                                   | LOAD<br>BUTTON<br>TOR                                                 | Specifications, as MIRPCI If shoust be Crode 60, has the option a strand girder of on submittal ster.  Longer mus. The control of the control |
|                     | 1 2               | ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tx46                       | <ul><li>(4)</li><li>(5)</li></ul> | 48           | 0.6        |         | 13.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.85                                                                           |        | 42.5<br>42.5                                             | 5.600                                             | 7.400                                                        | 4.549                                                                   | -4.394<br>-4.255                                | 6639<br>6443                                                    | 0.528                                                                   | 0.634                                                                 | s have been ercent. Optional gronds must be strem unless a Fill row "2.5", nning soch row till the "A" e 2" spacing so rands are in the "ands are in "ands are in the "ands are in the "ands are in the "ands are in "ands are in the "ands are in the "ands are in the "ands are in " |
| NORTHBOUND          | 3-6<br>&<br>16-20 | ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tx54                       |                                   | 60           | 1/2        | 270     | 17.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.94                                                                          | 10     | 50.5                                                     | 5.400                                             | 6.100                                                        | 3, 906                                                                  | -3.944                                          | 7752                                                            | 0.591                                                                   | 0.767                                                                 | rands are in the low relaxation each. 05" in width as is permitted providing provided the is alear approved .005" form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DIRECT<br>CONNECTOR | 7-8<br>&<br>12-13 | ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tx54                       |                                   | 22           | <b>1/2</b> | 270     | 20.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19. 19                                                                         | 4      | 10.5                                                     | 4.000                                             | 5.000                                                        | 1.829                                                                   | -1.948                                          | 4110                                                            | 0.656                                                                   | 0.767                                                                 | sses (ksi):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | 14                | ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tx54                       |                                   | 30           | 1/2        | 270     | 19.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.41                                                                          | 6      | 18.5                                                     | 4.000                                             | 5.000                                                        | 2.345                                                                   | -2.479                                          | 5200                                                            | 0.688                                                                   | 0.767                                                                 | n.<br>permitted in st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | 15                | ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tx54                       |                                   | 66           | 1/2        | 270     | 17.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.52                                                                          | 12     | 48.5                                                     | 5.800                                             | 6. 400                                                       | 4,008                                                                   | -4.128                                          | 8367                                                            | 0.688                                                                   | 0.767                                                                 | row. Full-leng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | 21                | ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tx54                       |                                   | 62           | 1/2        | 270     | 17.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.01                                                                          | 10     | 50.5                                                     | 5.600                                             | 6.300                                                        | 4.026                                                                   | -4.058                                          | 7954                                                            | 0.588                                                                   | 0.767                                                                 | ING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |              |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |        |                                                          | 2 1/2 = 32 SE                                     | 13                                                           | Spo of 2"                                                               | Nichola<br>3/24/                                | (1)                                                             | PREST                                                                   | Bridge DN RESSED IRDER -STANDA                                        | of of Transportation  CONCRET  DESIGNS  RD SPANS)  IGND  TGOD  TGOTON OF JET ON |

OPTIONAL DESIGN



DESIGNED GIRDERS (DEPRESSED STRANDS)



Rer: SLA 03-23-11



NON-STANDARD STRAND PATTERNS









|            |                       | DESIG                              | GNED GIRDE     |                          |              | (ANDS     |                                                                 |                        | OPTIONA                                                  | AL DESI                                                         | GN                              |         |                                                                                      | _                                        | į.                                                     | 1                                                       | NON-STANDA                                                  | ARD STRAN                                                          | D PATTERNS                                                                                                |
|------------|-----------------------|------------------------------------|----------------|--------------------------|--------------|-----------|-----------------------------------------------------------------|------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|---------|--------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| STRUCTURE  | SPAN GIRDI<br>NO. NO. | ER GIRDER NON<br>TYPE STR<br>PATTE | TOTAL SIZE     | fpu €                    | -e- 0        | NO. TO    | CONCRETE  ELEASE WINII STRGTH 28 6 CON STRG f'oi f'oi (Ns1) (Ns | P STRESS<br>TH (TOP ©) | LOAD<br>TENSILE<br>STRESS<br>(BOTT C)<br>CSERVICE III)(S | REQUIRED WINIMAM ULTIMATE WOMENT CAPACITY STRENGTH IN (ff-kips) | LIVE LOAD DISTRIBUTION FACTOR 2 | 1 2 2   | 6.5                                                                                  |                                          | Girdere<br>yp)                                         | PATTERN (4)                                             | B(2.5, 4.5)<br>C(2.5, 4.5)                                  | STRAND ARR<br>AT € OF<br>, 6.5, 8.5,<br>, 6.5, 8.5,<br>, 6.5, 8.5, | 0.5, 12.5)<br>10.5, 12.5)<br>10.5)                                                                        |
|            | 1 ALI                 | Tx46 (4                            | 48 0.6         | 270 13.3                 | 5 5.85       | 12 42.5 5 | 5.600 7.4                                                       | 00 4.549               | -4.394                                                   | 6639                                                            | 0.528 0.6                       | 334 D 2 | 2.5<br>0.5<br>8.5                                                                    |                                          |                                                        |                                                         | D(2.5, 4.5)                                                 | 6.5, 8.5,                                                          | (0.5)                                                                                                     |
|            | 2 ALI                 | Tx46 (5                            | 44 0.6         | 270 13.8                 | 8 6.60       | 10 42.5 5 | 5, 400 7, 1                                                     | 00 4, 399              | -4, 255                                                  | 6443                                                            | 0.528 0.6                       | 34 -    | 4,5<br>2,5                                                                           | Z:::\                                    | 3 1/2                                                  | (5)                                                     | A(2.5, 4.5                                                  | 6.5, 8.5,                                                          | 0.5)                                                                                                      |
|            | _                     |                                    |                |                          |              |           |                                                                 |                        |                                                          |                                                                 |                                 |         |                                                                                      | _                                        |                                                        |                                                         |                                                             |                                                                    | .5)                                                                                                       |
|            |                       |                                    | DE             | SIGN                     | ED G         | IRDER     | es co                                                           | EPRES                  | SED S                                                    | TRAN                                                            | DS)                             |         |                                                                                      |                                          | OPTION                                                 | VAL DES                                                 | IGN                                                         |                                                                    |                                                                                                           |
| STRUCTURE  |                       |                                    |                |                          |              | , ,       | PRESTR                                                          | ESSING                 | STRANDS                                                  |                                                                 |                                 | CONC    |                                                                                      | DESIGN                                   | DESIGN                                                 | REQUIRED                                                | LIVE                                                        | LOAD                                                               | Specifications,                                                                                           |
|            | SPAN<br>NO.           | GIRDER<br>NO.                      | GIRDER<br>TYPE | STD<br>STRAND<br>PATTERN | TOTAL<br>NO. | SIZE      | STRETH                                                          | .¢.                    | *e*<br>END                                               | NO.                                                             | TO                              | STRGTH  | WINIMAN<br>28 DAY<br>COMP<br>STRGTH                                                  | COMP<br>STRESS<br>(TOP ()<br>(SERVICE 1) | LOAD<br>TENSILE<br>STRESS<br>(BOTT C)<br>(SERVICE 111) | MINIMA<br>ULTIMATE<br>MOMENT<br>CAPACITY<br>ISTRENGTH 1 | FAC                                                         | BUTTON<br>CTOR                                                     | ass H(HPC) if st<br>ust be Grade 60.<br>has the option<br>d strand girder<br>design submittal<br>stered   |
|            |                       |                                    |                |                          |              | (in)      | (kai)                                                           | (in)                   | (în)                                                     | _                                                               | (in)                            | (ksi)   | (ksi)                                                                                | fot (ksi)                                | fcb(ksi)                                               | (ft-kips)                                               | Moment                                                      | Shear                                                              | longer must have reater than that                                                                         |
|            | ١,                    | ALL                                | Tx46           | 4                        | 48           | 0.6       | 270                                                             | 13.35                  | 5.85                                                     | 12                                                              | 42.5                            | 5.600   | 7.400                                                                                | 4.549                                    | -4.394                                                 | 6639                                                    | 0.528                                                       | 0.634                                                              | s have been<br>ercent. Optional<br>trands must be<br>system unless a<br>Fill row "2.5",<br>nning each row |
|            | 2                     | ALL                                | Tx46           | (3)                      | 44           | 0.6       | 270                                                             | 13.88                  | 6.60                                                     | 10                                                              | 42.5                            | 5.400   | 7.100                                                                                | 4, 399                                   | -4.255                                                 | 6443                                                    | 0.528                                                       | 0.634                                                              | til the required<br>in the "A"<br>e 2" specing so<br>rends are in the<br>low relaxation                   |
| NORTHBOUND | 3-6<br>&<br>16-20     | ALL                                | Tx54           |                          | 60           | 1/2       | 270                                                             | 17.61                  | 10.94                                                    | 10                                                              | 50.5                            | 5.400   | 6.100                                                                                | 3.906                                    | -3.944                                                 | 7752                                                    | 0.591                                                       | 0.767                                                              | each. 05" in width as is permitted providing provided the 1" clear approved .005" form                    |
| DIRECT     | 7-8<br>&<br>12-13     | ALL                                | Tx54           |                          | 22           | 1/2       | 270                                                             | 20.28                  | 19. 19                                                   | 4                                                               | 10.5                            | 4.000   | 5.000                                                                                | 1.829                                    | -1.948                                                 | 4110                                                    | 0.656                                                       | 0.767                                                              | sses (ksl):                                                                                               |
|            | 14                    | ALL                                | Tx54           |                          | 30           | 1/2       | 270                                                             | 19.81                  | 17.41                                                    | 6                                                               | 18.5                            | 4.000   | 5.000                                                                                | 2.345                                    | -2.479                                                 | 5200                                                    | 0.688                                                       | 0.767                                                              | permitted in st                                                                                           |
|            | 15                    | ALL                                | Tx54           |                          | 66           | 1/2       | 270                                                             | 17.07                  | 10,52                                                    | 12                                                              | 48.5                            | 5.800   | 6.400                                                                                | 4,008                                    | -4.128                                                 | 8367                                                    | 0.688                                                       | 0.767                                                              | I-length debonde<br>row. Full-leng<br>.F.4.                                                               |
|            | 21                    | ALL                                | Tx54           |                          | 62           | 1/2       | 270                                                             | 17.46                  | 11.01                                                    | 10                                                              | 50.5                            | 5.600   | 6.300                                                                                | 4,026                                    | -4.058                                                 | 7954                                                    | 0.588                                                       | 0.767                                                              | DING                                                                                                      |
|            |                       |                                    |                |                          |              |           |                                                                 |                        |                                                          |                                                                 |                                 | 32 55   | 0.55<br>8.64<br>9.72<br>9.73<br>9.73<br>9.73<br>9.73<br>9.73<br>9.73<br>9.73<br>9.73 | Z S S S S S S S S S S S S S S S S S S S  | NICHOL<br>100                                          | 2288<br>2288<br>2288<br>2288<br>2007<br>2011            | PREST<br>I-G                                                | RESSED<br>IRDER                                                    | of of Transportation  CONCRET  DESIGNS  RD SPANS)  IGND                                                   |
| :          |                       |                                    |                |                          |              |           |                                                                 |                        |                                                          |                                                                 |                                 | 2       |                                                                                      | Spa at 2"                                | . ,                                                    | 7                                                       | uti lighdstell, dgn<br>)Tx007 June 200                      | 7 01578007                                                         | IN TROOT IN JER O                                                                                         |
|            |                       |                                    |                |                          |              |           |                                                                 | 0                      |                                                          |                                                                 |                                 |         | TYPE T                                                                               | x62 & Tx7                                | 70 <sup>③</sup>                                        |                                                         | ACVISIONS<br>CC/OS: Seneral Notes,<br>10/OS: Seneral Notes, | ELP                                                                | TY CONTROL SELT J                                                                                         |











| CTOHOTHOG   |            |                            | GNED GIRDER                                      |                   |          | 111001        |                                         | _                      | OPTIONA                     |                                 |                                     | _              |                | NON-STANDARD STRAND PATTERNS |                   |                     |                        |             |                                                                   |  |
|-------------|------------|----------------------------|--------------------------------------------------|-------------------|----------|---------------|-----------------------------------------|------------------------|-----------------------------|---------------------------------|-------------------------------------|----------------|----------------|------------------------------|-------------------|---------------------|------------------------|-------------|-------------------------------------------------------------------|--|
| STRUCTURE   | SPAN GIRDE | ER GIRDER MON-<br>TYPE STD | TOTAL SIZE                                       | PRESTRESSING      |          | EPRESSED RE   | CONCRETE<br>ELEASE MINIS<br>STRGTH 28 D |                        | DESTON I<br>LOAD<br>TENSILE | REQUIRED<br>MINIMAM<br>LLTIMATE | LIVE LOAD<br>DISTRIBUTION<br>FACTOR | T 3            | 5 ,            | - \$\$                       | 91                | PATTERN             | AT & OF STREET         |             |                                                                   |  |
| 0.110010112 | NO.        | STRAN<br>PATTE             | E70K                                             | -                 |          | NO. TO        | (1) COM<br>STRO                         | P STRESS<br>TH (TOP ©) | (8011.6)                    | ULTIMATE<br>MOMENT<br>CAPACITY  | (2)                                 | 30             | 5              | ) !! [                       | op l              | (4)                 |                        | 6.5, 8.5, 1 |                                                                   |  |
|             |            |                            | (In)                                             | fpu<br>(ksl) (in) | (In)     | (in)          | f'ol f'ol (ksi) (ks                     | for (ks1)              | fcb(ks1)                    |                                 | Moment Shed                         | 2 2 2          | 5.5            | 1337                         | 5                 |                     | C(2.5, 4.5             | 6.5, 8.5, 1 | 0.5)                                                              |  |
|             | 1 ALL      | L Tx46 (4)                 | 48 0.6                                           | 270 13.35         | 5 5.85 1 | 2 42.5 5      | .600 7.4                                | 00 4.549               | -4.394                      | 6639                            | 0.528 0.6                           | 34 0 1         | 2. 5<br>0. 5   | 133                          | ₹ °               |                     | E(2.5, 4.5)            | 6.5, 8.5, 1 | 0.5)                                                              |  |
|             |            | 1.210                      | 10 0.0                                           | 100000            |          |               |                                         | 1.545                  | 11.554                      | 0033                            | 0.0                                 | S 1            | 5.5            | <b>芝滋し</b>                   | 52                | (5)                 | A12 5 A 5              | 6.5, 8.5, 1 | 0.51                                                              |  |
|             | 2 ALI      | Tx46 (5)                   | ) 44 0.6                                         | 270 13.88         | 8 6.60 1 | 0 42.5 5      | 400 7.1                                 | 00 4.399               | -4,255                      | 6443                            | 0.528 0.6                           | 34             |                |                              | 10                | (3)                 | A(2,5, 4,5)            | 0.0, 0.0,   | .5)                                                               |  |
|             |            |                            |                                                  |                   | 50 A     | LODES         | - 10                                    | FDDFF                  | CCD C                       | 70.44                           | 001                                 |                | $\overline{}$  | T                            | 077101            | 056                 |                        |             | .5)                                                               |  |
|             |            |                            | Ut                                               | 7210N             | EU G     | IKUEN         | ט נט                                    | FLKF2                  | SED S                       | IKAN                            | 151                                 |                |                |                              | OBLITON           | IAL DES             | IGN                    |             |                                                                   |  |
| STRUCTURE   |            |                            |                                                  |                   |          | F             | PRESTR                                  | ESSING :               | STRANDS                     |                                 |                                     | CONC           | RETE           | DESIGN                       | DESIGN            | REQUIRED            | LIVE                   | LOAD        | 1                                                                 |  |
|             | SPAN       | GIRDER                     |                                                  |                   |          |               |                                         |                        |                             | DEPR                            | ESSED                               | RELEASE        | MINIMA         | LOAD                         | LOAD              | M]N]MJM             | DESTRIBUTION<br>FACTOR |             | Specifications<br>ass H(HPC) if                                   |  |
|             | NO.        | NO.                        | TYPE                                             | STRAND            | TOTAL    | SIZE          | STRETH                                  | "e"                    | .e.                         |                                 |                                     | STROTH         | 26 DAY<br>COMP | STRESS                       | TENSILE<br>STRESS | ULT INATE<br>MOMENT |                        |             | ust be Grade of has the option distrand gird design submit stered |  |
|             |            |                            | 1                                                | PATTERN           | NO.      |               |                                         |                        | END                         | NO.                             | то                                  | 0              | STRETH         | (TOP C)                      | (BOTT C)          | CAPACITY            | ) (                    | 2)          |                                                                   |  |
|             |            |                            | 1                                                |                   |          | (in)          | fpu                                     |                        | (in)                        |                                 |                                     | f'oi           | f'c            | (SERVICE 1)                  |                   |                     |                        |             | longer must h                                                     |  |
|             | _          |                            | <del>                                     </del> | $\vdash$          |          | 1100          | (ksi)                                   | (in)                   | CINZ                        | _                               | (in)                                | (ksi)          | (kşi)          | fot (ksi)                    | fcb(ksi)          | (ff-kips)           | Monent                 | Shear       | reater than the                                                   |  |
|             |            |                            |                                                  |                   |          | L !           |                                         |                        |                             |                                 |                                     |                |                | l                            |                   |                     |                        |             | ercent. Option                                                    |  |
|             | 1          | ALL                        | Tx46                                             | (d)               | 48       | 0.6           | 270                                     | 13.35                  | 5.85                        | 12                              | 42.5                                | 5.600          | 7.400          | 4.549                        | -4.394            | 6639                | 0.528                  | 0.634       | trands must be<br>system unless                                   |  |
|             | 1          |                            |                                                  |                   |          | 1 1           |                                         |                        |                             |                                 |                                     |                | 1              | I                            |                   |                     |                        |             | Fill row "2.5"<br>nning each row<br>til the requir                |  |
|             | 2          | ALL                        | Tx46                                             | (5)               | 44       | 0.6           | 270                                     | 13.88                  | 6.60                        | 10                              | 42.5                                | 5.400          | 7.100          | 4.399                        | -4.255            | 6443                | 0.528                  | 0.634       | in the "A"<br>e 2" spacing s                                      |  |
|             | 1          |                            |                                                  |                   |          | 1             |                                         |                        |                             |                                 |                                     |                |                |                              | 1,1200            |                     |                        | ****        | ronds are in t                                                    |  |
|             |            |                            | 1                                                | 1 1               |          | 1 1           |                                         |                        | 1                           | 1                               |                                     |                | 1              | ı                            |                   |                     |                        |             | low relaxation each.  105" in width a                             |  |
|             | 3-6        | ALL                        | Tx54                                             |                   | 60       | 1/2           | 270                                     | 17.61                  | 10.94                       | 1,0                             | 50.5                                | 5.400          | 6.100          | 3.906                        | -3.944            | 7752                | 0.591                  | 0.767       | is permitted<br>providing                                         |  |
|             | 16-20      |                            | 1224                                             | 1 /               | 00       | /2            | 210                                     |                        | 10.54                       | ١,٠                             | 50.5                                | 3.400          | 0.100          | 3. 506                       | -3.944            | 1132                | 0. 551                 | 0. 161      | provided the<br>1" clear                                          |  |
| ORTHBOUND   |            |                            |                                                  | 1 /               |          |               |                                         |                        |                             |                                 |                                     |                | 1              | ı                            |                   |                     |                        |             | opproved<br>.005° form                                            |  |
| DIRECT      | 7.0        |                            |                                                  |                   |          |               |                                         |                        |                             |                                 |                                     |                |                |                              | K                 |                     |                        |             |                                                                   |  |
| CONNECTOR   | 7-8        | ALL                        | Tx54                                             |                   | 22       | 1/2           | 270                                     | 20. 28                 | 19. 19                      | 4                               | 10.5                                | 4.000          | 5.000          | 1.829                        | -1.948            | 4110                | 0.656                  | 0.767       | sses (ksi):                                                       |  |
|             | 12-13      |                            | 1224                                             | 1 /               |          | 12            | 1                                       |                        |                             | '                               |                                     | 4.000          | 3.000          | 1.023                        | 1.540             | 7110                | 0.030                  | 0.101       |                                                                   |  |
|             |            | 1                          |                                                  |                   |          | 1 7           |                                         |                        |                             |                                 |                                     |                |                |                              |                   |                     |                        |             |                                                                   |  |
|             |            | 1 1                        | i .                                              | i )               |          | 1 1           |                                         |                        |                             |                                 |                                     |                |                | i                            | I I               | I                   | i                      | i i         |                                                                   |  |
|             |            |                            | THEA                                             |                   | 30       | <sub>12</sub> | 270                                     |                        |                             | ے ا                             |                                     | 4 000          | E 000          | 2 745                        | -2.470            | E300                |                        |             | r.                                                                |  |
|             | 14         | ALL                        | Tx54                                             |                   | 30       | 1/2           | 270                                     | 19.81                  | 17.41                       | 6                               | 18.5                                | 4.000          | 5.000          | 2.345                        | -2.479            | 5200                | 0.688                  | 0.767       | n.<br>permitted in s                                              |  |
|             |            | ALL                        |                                                  |                   |          |               |                                         |                        |                             |                                 |                                     |                |                |                              | -2.479            | 5200                | 0.688                  | 0.767       | permitted in s<br>I-length debond<br>row, Full-len                |  |
|             | 14         | ALL                        | Tx54                                             |                   | 30<br>66 | 1/2<br>1/2    |                                         | 19.81                  |                             |                                 | 18.5<br>48.5                        | 4.000<br>5.800 | 5.000<br>6.400 | 2.345<br>4.008               | -2.479<br>-4.128  | 5200<br>8367        | 0.688                  | 0.767       | I-length debond                                                   |  |
|             |            |                            |                                                  |                   |          |               |                                         |                        |                             |                                 |                                     |                |                |                              |                   |                     |                        |             | I-length debond                                                   |  |
|             |            |                            |                                                  |                   |          |               | 270                                     | 17.07                  |                             | 12                              |                                     |                |                |                              |                   |                     |                        |             | I-length debond                                                   |  |











|            |                      | DESI                                   | GNED GIRDE     |                                  |              | (ANDS      |                                                                |                                                 | OPTIONA                                                  | L DESI                                               | GN                                         |                   |                                           |                                          | +                             |                                                         | NON-STAND                                      | ARD STRAN                                           | D PATTERNS                                                                                                       |  |
|------------|----------------------|----------------------------------------|----------------|----------------------------------|--------------|------------|----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------|-------------------|-------------------------------------------|------------------------------------------|-------------------------------|---------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| STRUCTURE  | SPAN GIRD<br>NO. NO. | ER GIRDER MO<br>TYPE ST<br>STR<br>PATT | D TOTAL SIZE   | fpu €                            | - e- 0       | NO. TO     | CONCRETE  ELEASE MINIS STRGTH 28 0 CON STRG f'oi f'o (Ks1) OKS | AY COMP<br>P STRESS<br>IN (TOP ¢)<br>(SERVICE I | LOAD<br>TENSILE<br>STRESS<br>(BOTT C)<br>(SERVICE 1113(S | REQUIRED WINIMAM ULTIMATE WOMENT CAPACITY TRENGTH IN | LIVE LOAD DISTRIBUTION FACTOR  Amonent She | 1 2               | 6.5                                       |                                          | Olypo<br>Olypo                | PATTERN (4)                                             | 8(2.5, 4.5<br>C(2.5, 4.5                       | STRAND ARR<br>AT € OF<br>, 6.5, 8.5,<br>, 6.5, 8.5, | 01RDER<br>10.5, 12.5)<br>10.5, 12.5)<br>10.5)                                                                    |  |
|            | 1 AL                 | L Tx46                                 | 48 0.6         | 270 13.3                         | 5 5.85       | 12 42.5 5  | 5.600 7.4                                                      | 00 4.549                                        | -4.394                                                   | 6639                                                 | 0.528 0.6                                  | 34 0 1<br>0 1     | 0, 5<br>8, 5                              | 1#                                       | ¥ .                           |                                                         | E(2.5, 4.5                                     | , 6.5, 8.5,                                         | 10.51                                                                                                            |  |
|            | 2 AL                 | Tx46 (5                                | 44 0.6         | 270 13.8                         | 8 6.60       | 10 42.5 5  | 5, 400 7, 1                                                    | 00 4, 399                                       | -4, 255                                                  | 6443                                                 | 0,528 0,6                                  | 34 - 1            | 4,5                                       | Z                                        | 2/2                           | (5)                                                     | A(2.5, 4.5                                     | , 6.5, 8.5,                                         | 10.5)                                                                                                            |  |
|            | _                    |                                        |                |                                  |              |            |                                                                |                                                 |                                                          |                                                      |                                            |                   |                                           | _                                        |                               |                                                         |                                                |                                                     | .5)                                                                                                              |  |
|            | l                    |                                        | DE             | ESIGN                            | ED G         | IRDEF      | RS (D                                                          | epres                                           | SED S                                                    | TRAN                                                 | DS)                                        |                   | - 1                                       | l                                        | OPTION                        | IAL DES                                                 | IGN                                            |                                                     | . 51                                                                                                             |  |
| STRUCTURE  |                      |                                        |                |                                  |              |            | PRESTR                                                         | ESSING                                          | STRANDS                                                  |                                                      |                                            | CONC              | RETE                                      | DESIGN                                   | DESIGN                        | REQUIRED                                                | LIVE                                           | LOAD                                                | 1                                                                                                                |  |
|            | SPAN<br>NO.          | GIRDER<br>NO.                          | GIRDER<br>TYPE | MON-<br>STD<br>STRAND<br>PATTERN | TOTAL<br>NO. | SIZE       | STRETH                                                         | .¢.                                             | END                                                      | NO.                                                  | TO                                         | RELEASE<br>STROTH | MINIMA<br>28 DAY<br>COMP<br>STRETH<br>F'c | COMP<br>STRESS<br>(TOP ¢)<br>(SERVICE II | TENSILE<br>STRESS<br>(BOTT E) | ULTIMATE<br>MOMENT<br>CAPACITY                          | DISTR                                          | 1BUTION<br>CTOR<br>2                                | Specifications<br>ass H(HPC) if sust be Grade 6<br>has the option<br>d strand girde<br>design submitte<br>stered |  |
|            |                      |                                        |                |                                  |              | (in)       | (kai)                                                          | (in)                                            | (în)                                                     |                                                      | (in)                                       | (ksi)             | (ksi)                                     | fot (ksi)                                | fcb(ksi)                      | (ff-kips)                                               | Monent                                         | Shear                                               | longer must ha<br>reater than tha                                                                                |  |
|            | ,                    | ALL                                    | Tx46           | 4                                | 48           | 0.6        | 270                                                            | 13.35                                           | 5.85                                                     | 12                                                   | 42.5                                       | 5.600             | 7.400                                     | 4.549                                    | -4, 394                       | 6639                                                    | 0.528                                          | 0.634                                               | s have been<br>ercent. Optiona<br>tronds must be<br>system unless a<br>Fill row "2.5",<br>nning each row         |  |
|            | 2                    | ALL                                    | Tx46           | (3)                              | 44           | 0.6        | 270                                                            | 13.88                                           | 6.60                                                     | 10                                                   | 42.5                                       | 5.400             | 7.100                                     | 4, 399                                   | -4.255                        | 6443                                                    | 0.528                                          | 0.634                                               | til the require                                                                                                  |  |
| NORTHBOUND | 3-6<br>&<br>16-20    | ALL                                    | Tx54           |                                  | 60           | 1/2        | 270                                                            | 17.61                                           | 10.94                                                    | 10                                                   | 50.5                                       | 5.400             | 6.100                                     | 3.906                                    | -3.944                        | 7752                                                    | 0.591                                          | 0.767                                               | eoch.  05" in width as is permitted providing provided the 1" clear approved .005" form                          |  |
| DIRECT     | 7-8<br>&<br>12-13    | ALL                                    | Tx54           |                                  | 22           | <b>1/2</b> | 270                                                            | 20.28                                           | 19. 19                                                   | 4                                                    | 10.5                                       | 4.000             | 5.000                                     | 1.829                                    | -1.948                        | 4110                                                    | 0.656                                          | 0.767                                               | sses (ksl):                                                                                                      |  |
|            | 14                   | ALL                                    | Tx54           |                                  | 30           | 1/2        | 270                                                            | 19.81                                           | 17.41                                                    | 6                                                    | 18.5                                       | 4.000             | 5.000                                     | 2.345                                    | -2.479                        | 5200                                                    | 0.688                                          | 0.767                                               | permitted in s                                                                                                   |  |
|            | 15                   | ALL                                    | Tx54           |                                  | 66           | 1/2        | 270                                                            | 17.07                                           | 10.52                                                    | 12                                                   | 48.5                                       | 5.800             | 6.400                                     | 4.008                                    | -4.128                        | 8367                                                    | 0.688                                          | 0.767                                               | row. Full-lend                                                                                                   |  |
|            | 21                   | ALL                                    | Tx54           |                                  | 62           | 1/2        | 270                                                            | 17.46                                           | 11.01                                                    | 10                                                   | 50.5                                       | 5.600             | 6.300                                     | 4,026                                    | -4.058                        | 7954                                                    | 0.588                                          | 0.767                                               | ING                                                                                                              |  |
|            |                      |                                        |                |                                  |              |            |                                                                |                                                 |                                                          |                                                      |                                            | 32.55             | D 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | CBAABCDEFG                               | NICHOL                        | 45 NOME<br>2288<br>1911<br>1911<br>1911<br>1901<br>1901 | PREST                                          | RESSED<br>IRDER                                     | of of Transportation  CONCRET DESIGNS  RD SPANS)  IGND                                                           |  |
|            |                      |                                        |                |                                  |              |            |                                                                |                                                 |                                                          |                                                      |                                            | 2                 | ,-                                        | x62 & Tx7                                | 70③                           |                                                         | Tx00T June 20  RCVISIONS  62/001 General Notes | 07 015TROOT                                         | FERGRAL AND PROJECT                                                                                              |  |





Rer: SLA 03-23-11













































































|           |                   | DESI                                   | GNED GIRDE     |                                  |              | (ANDS      |                                                                |                                              | OPTIONA                                                  | L DESI                                               | GN                                           |                 |                                         | NON-STANDARD STRAND PATTERNS            |                               |                                          |                                                                          |                                                             |                                                                                                                         |
|-----------|-------------------|----------------------------------------|----------------|----------------------------------|--------------|------------|----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------------|-------------------------------|------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| STRUCTURE | SPAN GIRDI        | ER GIRDER MO<br>TYPE ST<br>STR<br>PATT | TOTAL SIZE     | fpu €                            | - e- 0       | NO. TO     | CONCRETE  ELEASE MINIS STROTH 28 0 CON STRO f'oi f'o (ks1) 0ks | AY COMP<br>P STRESS<br>(TOP C)<br>(SERVICE I | LOAD<br>TENSILE<br>STRESS<br>(BOTT C)<br>(SERVICE 111)(S | REQUIRED WINIMAM ULTIMATE WOMENT CAPACITY TRENGTH IN | LIVE LOAD DISTRIBUTION FACTOR  2  Moment She |                 | 6.5                                     |                                         | Olindera<br>Typ)              | PATTERN (4)                              | B(2.5, 4.5)<br>C(2.5, 4.5)                                               | STRAND ARRA<br>AT & OF ()<br>, 6.5, 8.5, 1<br>, 6.5, 8.5, 1 | 0.5, 12.5)<br>0.5, 12.5)<br>0.5)                                                                                        |
|           | 1 ALI             | L Tx46                                 | 48 0.6         | 270 13.3                         | 5 5.85       | 12 42.5 5  | 5.600 7.4                                                      | 00 4.549                                     | -4.394                                                   | 6639                                                 | 0.528 0.6                                    | 34 0 2<br>0 0 1 | 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                                         | ¥ .                           |                                          | D(2.5, 4.5)<br>E(2.5, 4.5)                                               | , 6.5, 8.5, 1                                               | 0.5)                                                                                                                    |
|           | 2 ALI             | Tx46                                   | 0.6            | 270 13.8                         | 8 6.60       | 10 42.5 5  | 5, 400 7, 1                                                    | 00 4.399                                     | -4, 255                                                  | 6443                                                 | 0,528 0,6                                    | 34 -            | 4.<br>2. 5                              | Z:::\                                   | 2 /2                          | (5)                                      | A(2.5, 4.5                                                               | 6.5, 8.5,                                                   | 0.5)                                                                                                                    |
|           |                   |                                        |                |                                  |              |            |                                                                |                                              |                                                          |                                                      |                                              |                 |                                         |                                         |                               |                                          |                                                                          |                                                             | .5)                                                                                                                     |
|           |                   |                                        | DE             | ESIGN                            | ED G         | IRDEF      | RS (D                                                          | EPRES                                        | SED S                                                    | TRAN                                                 | DS)                                          |                 | -\-1                                    | l                                       | OPTION                        | NAL DES                                  | IGN                                                                      |                                                             | . 37                                                                                                                    |
| STRUCTURE |                   |                                        |                |                                  |              |            | PRESTR                                                         | ESSING :                                     | STRANDS                                                  |                                                      |                                              | CONC            | RETE                                    | DESIGN                                  | DESIGN                        | REQUIRED                                 | LIVE                                                                     | LOAD                                                        |                                                                                                                         |
|           | SPAN<br>NO.       | GIRDER<br>NO.                          | GIRDER<br>TYPE | NON-<br>STD<br>STRAND<br>PATTERN | TOTAL<br>NO. | SIZE       | STRETH                                                         | .¢.                                          | END                                                      | NO.                                                  | TO                                           | STRGTH          | MINIMA<br>28 DAY<br>COMP<br>STRGTH      | COMP<br>STRESS<br>(TOP ¢)               | TENSILE<br>STRESS<br>(BOTT E) | MINIMA<br>ULTIMATE<br>MOMENT<br>CAPACITY | FAG                                                                      | BUTTON<br>CTOR                                              | Specifications,<br>ass H(HPC) if a<br>ust be Grade 60<br>has the option<br>d strand girder<br>design submitte<br>stered |
|           |                   |                                        |                |                                  |              | (in)       | (ksi)                                                          | (in)                                         | (in)                                                     |                                                      | (in)                                         | f'oi<br>(ksi)   | f'c<br>(kşi)                            | (SERVICE II                             | (SERVICE 111)<br>fcb(ksi)     | (ft-kips)                                | Moment                                                                   | Shear                                                       | longer must he                                                                                                          |
|           | ,                 | ALL                                    | T×46           | 4                                | 48           | 0.6        | 270                                                            | 13.35                                        | 5.85                                                     | 12                                                   | 42.5                                         | 5.600           | 7.400                                   | 4.549                                   | -4.394                        | 6639                                     | 0.528                                                                    | 0.634                                                       | s have been<br>ercent. Options<br>tronds must be<br>system unless<br>Fill row 2.5".                                     |
|           | 2                 | ALL                                    | Tx46           | (3)                              | 44           | 0.6        | 270                                                            | 13.88                                        | 6.60                                                     | 10                                                   | 42.5                                         | 5.400           | 7.100                                   | 4.399                                   | -4.255                        | 6443                                     | 0.528                                                                    | 0.634                                                       | nning each row til the require in the "A" e 2" spacing so rands are in the low relaxation                               |
| ORTHBOUND | 3-6<br>&<br>16-20 | ALL                                    | Tx54           |                                  | 60           | 1/2        | 270                                                            | 17.61                                        | 10.94                                                    | 10                                                   | 50.5                                         | 5.400           | 6.100                                   | 3. 906                                  | -3.944                        | 7752                                     | 0.591                                                                    | 0.767                                                       | low relaxation each, 05" in width as is permitted providing provided the 1" clear approved .005" form                   |
| DIRECT    | 7-8<br>%<br>12-13 | ALL                                    | Tx54           |                                  | 22           | <b>1/2</b> | 270                                                            | 20.28                                        | 19. 19                                                   | 4                                                    | 10.5                                         | 4.000           | 5.000                                   | 1.829                                   | -1.948                        | 4110                                     | 0.656                                                                    | 0.767                                                       | sses (ksl):                                                                                                             |
|           | 14                | ALL                                    | Tx54           |                                  | 30           | 1/2        | 270                                                            | 19.81                                        | 17.41                                                    | 6                                                    | 18.5                                         | 4.000           | 5.000                                   | 2.345                                   | -2.479                        | 5200                                     | 0.688                                                                    | 0.767                                                       | permitted in s                                                                                                          |
|           | 15                | ALL                                    | Tx54           |                                  | 66           | 1/2        | 270                                                            | 17.07                                        | 10.52                                                    | 12                                                   | 48.5                                         | 5.800           | 6. 400                                  | 4,008                                   | -4.128                        | 8367                                     | 0.688                                                                    | 0.767                                                       | row. Full-len                                                                                                           |
|           | 21                | ALL                                    | Tx54           |                                  | 62           | 1/2        | 270                                                            | 17.46                                        | 11.01                                                    | 10                                                   | 50.5                                         | 5.600           | 6.300                                   | 4,026                                   | -4.058                        | 7954                                     | 0.588                                                                    | 0.767                                                       | ING                                                                                                                     |
|           |                   |                                        |                |                                  |              |            |                                                                |                                              |                                                          |                                                      |                                              | 32 SC           | 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 | Z S S S S S S S S S S S S S S S S S S S | NI CHO                        | 25 NORE<br>22288<br>2005<br>2007<br>2011 | PREST<br>I-G                                                             | RESSED<br>IRDER                                             | t of Transportation  CONCRET  DESIGNS  RD SPANS)  IGND                                                                  |
|           |                   |                                        |                |                                  |              |            |                                                                |                                              |                                                          |                                                      |                                              | 5 2             | 13                                      | x62 & Tx                                | _ ,                           | 71<br>(3                                 | LE: igndstel.dgn<br>Tx00T June 200<br>ACVISIONS<br>62/08: Ceneral Notes. | OT DESTROOT                                                 | E TROOT INC. JTR.                                                                                                       |





Rer: SLA 03-23-11



































































































NUM























































































Pass

Pass

Pass





15.705 | 0.472 | -2.230 | -0.494 | 0.381 | -0.023 | -1.849 |

















## Submission of Optional Girder Design

- Shop drawings
- Sealed optional design calculations (the Short Report)
- TOGA file







## Questions

PGSuper Help Desk

TxDOT\_PGSuperHelp@txdot.gov





